Exercise 9.7.1

For a homogeneous spherical solid with constant thermal diffusivity, K, and no heat sources, the equation of heat conduction becomes

$$
\frac{\partial T(r, t)}{\partial t}=K \nabla^{2} T(r, t)
$$

Assume a solution of the form

$$
T=R(r) T(t)
$$

and separate variables. Show that the radial equation may take on the standard form

$$
r^{2} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}+\alpha^{2} r^{2} R=0
$$

and that $\sin \alpha r / r$ and $\cos \alpha r / r$ are its solutions.
[TYPO: T represents the temperature. Use a different variable Θ for the separated function of t.]

Solution

Because the solid is spherical, expand the Laplacian operator in spherical polar coordinates (r, θ, φ), where θ is the angle from the polar axis.

$$
\frac{\partial T(r, t)}{\partial t}=K[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T(r, t)}{\partial r}\right)+\underbrace{\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial T(r, t)}{\partial \theta}\right)}_{=0}+\underbrace{\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} T(r, t)}{\partial \varphi^{2}}}_{=0}]
$$

T is only a function of r and t, so the angular derivatives vanish.

$$
\frac{\partial T}{\partial t}=\frac{K}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)
$$

The equation of heat conduction is linear and homogeneous, so the method of separation of variables can be applied to solve it. Assume a product solution of the form $T(r, t)=R(r) \Theta(t)$ and substitute it into the PDE.

$$
\begin{aligned}
\frac{\partial}{\partial t}[R(r) \Theta(t)] & =\frac{K}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial}{\partial r}[R(r) \Theta(t)]\right] \\
R \frac{d \Theta}{d t} & =\Theta \frac{K}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)
\end{aligned}
$$

Divide both sides by $K R(r) \Theta(t)$. (The final answer for $T(r, t)$ will be the same regardless which side K is on.)

$$
\underbrace{\frac{1}{K \Theta} \frac{d \Theta}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{r^{2} R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)}_{\text {function of } r}
$$

The only way a function of t can be equal to a function of r is if both are equal to a constant λ.

$$
\frac{1}{K \Theta} \frac{d \Theta}{d t}=\frac{1}{r^{2} R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=\lambda
$$

As a result of applying the method of separation of variables, the equation of conduction has reduced to two ODEs - one in r and one in t.

$$
\left.\begin{array}{rl}
\frac{1}{K \Theta} \frac{d \Theta}{d t} & =\lambda \\
\frac{1}{r^{2} R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right) & =\lambda
\end{array}\right\}
$$

Solve the first ODE for Θ.

$$
\frac{d \Theta}{d t}=K \lambda \Theta
$$

The general solution is written in terms of the exponential function.

$$
\Theta(t)=C_{1} e^{K \lambda t}
$$

In order for $T(r, t)$ to remain bounded as $t \rightarrow \infty$, we require that λ be either zero or negative. Suppose first that λ is zero: $\lambda=0$. The ODE for R becomes

$$
\frac{1}{r^{2} R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=0
$$

Multiply both sides by $r^{2} R$.

$$
\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=0
$$

Integrate both sides with respect to r.

$$
r^{2} \frac{d R}{d r}=C_{2}
$$

Divide both sides by r^{2}.

$$
\frac{d R}{d r}=\frac{C_{2}}{r^{2}}
$$

Integrate both sides with respect to r once more.

$$
R(r)=-\frac{C_{2}}{r}+C_{3}
$$

Note that this is the steady-state temperature profile in a spherical geometry. With two boundary conditions, one could determine the constants, C_{2} and C_{3}. Suppose secondly that λ is negative: $\lambda=-\alpha^{2}$. The ODE for R becomes

$$
\frac{1}{r^{2} R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=-\alpha^{2}
$$

Multiply both sides by $r^{2} R$.

$$
\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=-\alpha^{2} r^{2} R
$$

Use the product rule to expand the left side.

$$
r^{2} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}=-\alpha^{2} r^{2} R
$$

The radial equation is thus

$$
r^{2} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}+\alpha^{2} r^{2} R=0
$$

Make the change of variables,

$$
R=\frac{W}{r}
$$

Find the derivatives of R in terms of this new variable.

$$
\begin{aligned}
\frac{d R}{d r} & =-\frac{W}{r^{2}}+\frac{W^{\prime}}{r} \\
\frac{d^{2} R}{d r^{2}} & =\frac{2}{r^{3}} W-\frac{W^{\prime}}{r^{2}}-\frac{W^{\prime}}{r^{2}}+\frac{W^{\prime \prime}}{r}=\frac{2}{r^{3}} W-\frac{2}{r^{2}} W^{\prime}+\frac{1}{r} W^{\prime \prime}
\end{aligned}
$$

Substitute these formulas into the radial equation to obtain an ODE for W.

$$
\begin{gathered}
r^{2}\left(\frac{2}{r^{3}} W-\frac{2}{r^{2}} W^{\prime}+\frac{1}{r} W^{\prime \prime}\right)+2 r\left(-\frac{W}{r^{2}}+\frac{W^{\prime}}{r}\right)+\alpha^{2} r^{2}\left(\frac{W}{r}\right)=0 \\
\frac{2}{r} W-2 W^{\prime}+r W^{\prime \prime}-\frac{2}{r} W+2 W^{\prime}+\alpha^{2} r W=0 \\
r W^{\prime \prime}+\alpha^{2} r W=0
\end{gathered}
$$

Divide both sides by r.

$$
W^{\prime \prime}+\alpha^{2} W=0
$$

The general solution is written in terms of sine and cosine.

$$
W(r)=C_{4} \cos \alpha r+C_{5} \sin \alpha r
$$

Therefore, since $R=W / r$,

$$
R(r)=C_{4} \frac{\cos \alpha r}{r}+C_{5} \frac{\sin \alpha r}{r}
$$

